Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Infect Dis ; 16(1): 544, 2016 Oct 07.
Article in English | MEDLINE | ID: mdl-27717318

ABSTRACT

BACKGROUND: E protein of tick-borne encephalitis virus (TBEV) and other flaviviruses is located on the surface of the viral particle. Domain III of this protein seems to be a promising component of subunit vaccines for prophylaxis of TBE and kits for diagnostics of TBEV. METHODS: Three variants of recombinant TBEV E protein domain III of European, Siberian and Far Eastern subtypes fused with dextran-binding domain of Leuconostoc citreum KM20 were expressed in E. coli and purified. The native structure of domain III was confirmed by ELISA antibody kit and sera of patients with tick-borne encephalitis. Immunogenic and protective properties of the preparation comprising these recombinant proteins immobilized on a dextran carrier with CpG oligonucleotides as an adjuvant were investigated on the mice model. RESULTS: All 3 variants of recombinant proteins immobilized on dextran demonstrate specific interaction with antibodies from the sera of TBE patients. Thus, constructed recombinant proteins seem to be promising for TBE diagnostics. The formulation comprising the 3 variants of recombinant antigens immobilized on dextran and CpG oligonucleotides, induces the production of neutralizing antibodies against TBEV of different subtypes and demonstrates partial protectivity against TBEV infection. CONCLUSIONS: Studied proteins interact with the sera of TBE patients, and, in combination with dextran and CPGs, demonstrate immunogenicity and limited protectivity on mice compared with reference "Tick-E-Vac" vaccine.


Subject(s)
Encephalitis Viruses, Tick-Borne/immunology , Encephalitis, Tick-Borne/immunology , Viral Envelope Proteins/genetics , Viral Vaccines/immunology , Animals , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , CpG Islands , Dextrans/metabolism , Encephalitis Viruses, Tick-Borne/pathogenicity , Encephalitis, Tick-Borne/prevention & control , Enzyme-Linked Immunosorbent Assay , Escherichia coli/genetics , Humans , Mice , Mice, Inbred BALB C , Protein Domains/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Viral Envelope Proteins/immunology , Viral Vaccines/genetics
2.
Mol Diagn Ther ; 13(2): 91-102, 2009.
Article in English | MEDLINE | ID: mdl-19537844

ABSTRACT

Microarrays have become important tools for high-throughput analysis of gene expression, chromosome aberrations, and gene mutations in cancer cells. In addition to high-density experimental microarrays, low-density, gel-based biochip technology represents a versatile platform for translation of research into clinical practice. Gel-based microarrays (biochips) consist of nanoliter gel drops on a hydrophobic surface with different immobilized biopolymers (primarily nucleic acids and proteins). Because of the high immobilization capacity of the gel, such biochips have a high probe concentration and high levels of fluorescence signals after hybridization, which allow the use of simple, portable detection systems. The notable accuracy of the analysis is reached as a result of the high level of discrimination between positive and negative gel-bound probes. Different applications of biochips in the field of hematologic oncology include analysis of chromosomal translocations in leukemias, diagnostics of T-cell lymphomas, and pharmacogenetics.


Subject(s)
Hematologic Neoplasms/metabolism , Oligonucleotide Array Sequence Analysis/methods , Protein Array Analysis/methods , Biomarkers, Tumor/analysis , Chromosome Aberrations , Gene Rearrangement , Genes, T-Cell Receptor gamma , Hematologic Neoplasms/diagnosis , Hematologic Neoplasms/genetics , Humans , Leukemia/diagnosis , Leukemia/genetics , Leukemia/metabolism , Oligonucleotide Array Sequence Analysis/instrumentation , Polymorphism, Single Nucleotide , Protein Array Analysis/instrumentation
3.
Am J Hematol ; 83(4): 279-87, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18061941

ABSTRACT

Polymorphisms in genes coding xenobiotic-metabolizing enzymes are considered as risk factors modifying susceptibility to cancer. We developed a biochip for the analysis of 18 mutations in 10 genes of metabolizing system: CYP1A1, CYP2D6, GSTT1, GSTM1, MTHFR, MTRR, NQO1, CYP2C9, CYP2C19, and NAT2. Using allele-specific hybridization on the biochip 76 T-cell non-Hodgkin's lymphoma (NHL) patients, 83 B-cell chronic lymphocytic leukemia (B-CLL) patients, and 177 healthy donors were tested. Polymorphic CYP1A1 alleles were more frequent in B-CLL patients relative to normal controls, for example, a combination of polymorphic variants 4887C > A, 4889A > G, and 6235T > C (OR = 1.76, 95% CI = 1.0-3.1). The GSTM1 null genotype was more frequent in NHL patients relative to controls (OR = 1.82, 95% CI = 1.1-3.1). The combination of unfavorable polymorphic CYP1A1 variants and GSTM1 null genotype was found more frequently in B-CLL patients relative to controls (OR = 2.52, 95% CI = 1.3-4.9). In addition, male B-CLL patients demonstrated a significantly increased occurrence of heterozygous and homozygous allele *2 of CYP2C9 gene (OR = 2.38, 95% CI = 1.1-5.2) as well as a combination of alleles *2 and *3 of the gene (OR = 2.09, 95% CI = 1.1-3.9). Thus, our findings show the association between polymorphic alleles of CYP1A1, GSTM1, and CYP2C9 genes and the risk to develop NHL or B-CLL. The developed biochip can be considered as a convenient analytical tool for research studies and predictive analysis in oncohematology.


Subject(s)
Biotransformation/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Lymphoma, T-Cell/genetics , Oligonucleotide Array Sequence Analysis , Xenobiotics/pharmacokinetics , Adult , Alleles , Arylamine N-Acetyltransferase/genetics , Carcinogens, Environmental/pharmacokinetics , Cytochrome P-450 Enzyme System/genetics , Female , Ferredoxin-NADP Reductase/genetics , Genetic Predisposition to Disease , Glutathione Transferase/genetics , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/epidemiology , Lymphoma, T-Cell/epidemiology , Male , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , NAD(P)H Dehydrogenase (Quinone)/genetics , Nucleic Acid Hybridization , Risk Factors , Russia/epidemiology
4.
J Mol Diagn ; 9(2): 249-57, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17384218

ABSTRACT

T-cell clonality estimation is important for the differential diagnosis between malignant and nonmalignant T-cell proliferation. Routinely used methods include polymerase chain reaction (PCR) analysis of T-cell receptor-gamma (TCR-gamma) gene rearrangements followed by Genescan analysis, polyacrylamide gel electrophoresis, or heteroduplex analysis to visualize amplification products. Here, we present a new method for the analysis after PCR of TCR-gamma rearrangements using hybridization on oligonucleotide microchip. A microchip was designed to contain specific probes for all functional variable (V) and joining (J) gene segments involved in rearrangements of the TCR-gamma locus. Fluorescently labeled fragments of rearranged gamma-chain from patients and donors were obtained in a multiplex nested PCR and hybridized with a microchip. The results were detected using a portable microchip analyzer. Samples from 49 patients with T-cell lymphomas or leukemias and 47 donors were analyzed for T-cell clonality by microchip and single-strand conformation polymorphism analysis, which served as a standard reference method. Comparison of two techniques showed full concordance of the results. The microchip-based approach also allowed the identification of V and J gene segments involved in the particular TCR-gamma rearrangement. The sensitivity of the method is sufficient to determine 10% of clonal cells in the sample.


Subject(s)
Gene Rearrangement, T-Lymphocyte/genetics , Genes, T-Cell Receptor gamma/genetics , Oligonucleotide Array Sequence Analysis/methods , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Adult , Aged , Clone Cells/cytology , Clone Cells/metabolism , Female , Gene Frequency , Humans , Male , Middle Aged , Nucleic Acid Hybridization , Sensitivity and Specificity , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...